首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   568篇
  免费   199篇
  国内免费   12篇
化学   68篇
晶体学   1篇
力学   55篇
数学   13篇
物理学   642篇
  2024年   2篇
  2023年   16篇
  2022年   12篇
  2021年   13篇
  2020年   21篇
  2019年   26篇
  2018年   8篇
  2017年   36篇
  2016年   67篇
  2015年   21篇
  2014年   59篇
  2013年   13篇
  2012年   30篇
  2011年   38篇
  2010年   44篇
  2009年   56篇
  2008年   49篇
  2007年   33篇
  2006年   35篇
  2005年   23篇
  2004年   23篇
  2003年   26篇
  2002年   13篇
  2001年   6篇
  2000年   9篇
  1999年   13篇
  1998年   11篇
  1997年   13篇
  1996年   21篇
  1995年   13篇
  1994年   11篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1977年   2篇
  1973年   1篇
排序方式: 共有779条查询结果,搜索用时 15 毫秒
11.
This paper is focused on the capabilities of gas–liquid foams to attenuate acoustic waves. It is postulated that the sound attenuation phenomenon in foams is largely governed by the hydrodynamic resistance of the Plateau-Gibbs channels (PGC) to the flow of liquid through them. It is shown that the addition of solid particles to gas–liquid foams has opposite effects depending on the concentration of the added solid particles. As long as the concentration of the added solid particles is smaller than a certain critical value the sound attenuation coefficient increases and as a result in the sound velocity decreases. However, if the concentration of the added solid particles becomes larger than this critical value the attenuation coefficient decreases and the sound velocity increases. When the concentration of the solid particles reaches some critical value, the particles block the Plateau-Gibbs channels and stop the filtration. As a result the attenuation coefficient of the sound wave decreases while the sound velocity, in such three-phase foams, increases. The point at which the sound wave stops attenuating and its velocity starts to increase is known as the point of self-clarification. Based on this postulate and on the results of our preliminary tests the present study provides a plausible explanation to the above-mentioned contradicting effect, and the self- clarification phenomenon.  相似文献   
12.
The bubbles have been widely used in biomedical field, military and chemical industry. The liquid jet generated by the bubble collapse through an orifice is utilized in needle-free injections and inkjet printing. In this paper we devised synchronized triggering equipment, experimentally investigated the mechanism in the interaction of an electric-spark generated a single bubble and a vertical wall with an air-back opening. Detailed observations were recorded and described for bubble oscillation, migration, jetting, as well as the high-speed water spike penetrating through the opening. The results revealed that there was a critical value of the bubble-wall distance, below which the bubble was directed away from the incomplete boundary, while the bubble may tear from the middle for larger distance. As the distance varied, we studied the volume of the water that rushed through the opening, the velocity at the tip of the water spike, and the center of the bubble as well as the migration of the bubble boundary. This work reveals that the high-speed water spike caused by the bubble may be a potential threat to the structures, specifically for cases with a small opening size and short bubble-boundary distance.  相似文献   
13.
An analytical model is developed to investigate the sound transmission loss from orthogonally rib-stiffened double laminated composite plates structure under a plane sound wave excitation, in which first order shear deformation theory is presented for laminated composite plates. By using the space harmonic approach and virtual work principle, the sound transmission loss is described analytically. The validity and feasibility of the model are verified by comparing the present theoretical predictions with numerical results published previously. The influences of structure geometrical parameters on sound transmission loss are subsequently presented. Through numerical results, it can be concluded that the proposed analytical model is accurate and simple in solving the vibroacoustic behavior of an orthogonally rib-stiffened double laminated composite plates.  相似文献   
14.
A communication system is implemented on digital signal processors (DSPs) for the underwater acoustic environment. The implemented receiver uses time reversal multi-channel combining followed by a single-channel decision feedback equalizer. Periodic channel estimation is employed to track the channel fluctuations. These techniques are used to mitigate time-varying inter-symbol interference, which is the main challenge in the underwater acoustic channel at operating frequencies greater than 10 kHz. Various optimization tasks are performed to reduce the receiver computational complexity. A fast implementation of the matching pursuit algorithm is tested on the DSP platform. Its performance, in terms of accuracy and run-time, is compared with that of the basic matching pursuit algorithm. Experimental results of the transmission and demodulation of binary phase-shift keying signals at three different symbol rates were obtained in the local Delaware Bay. The low bit error rates demonstrate the effectiveness of our implementation.  相似文献   
15.
The interaction between the flow field and the sound field is responsible for the sound absorption at perforated acoustic liners with bias flow and has to be investigated contactlessly. Based on the optically measured flow velocity spectrum, an energy analysis was performed. As a result, the generation of broadband flow velocity fluctuations in the shear layer surrounding the bias flow caused by the flow sound interaction has been observed. In addition, the magnitude of this acoustically induced flow velocity oscillation exhibits a correlation with the acoustic dissipation coefficient of the bias flow liner. This supports the assumption that an energy transfer between the flow field and the sound field is responsible for the acoustic damping.  相似文献   
16.
This paper presents an evaluation method for measuring the sound pressure level and mode shapes of tire cavity resonance by using a multi-microphone system. Two commercial tires were evaluated to compare abilities of noise suppression by means of this method in the range of the first resonance from 200 to 260 Hz. One tire was a special tire that suppresses tire cavity resonance with polyurethane foam mounted on the tire’s inner liner. The other tire was a normal tire with no polyurethane foam. The mode shape change from vertical to horizontal direction in both tires. However, the sound pressure level of the special tire was lower than the normal tire at all frequencies.  相似文献   
17.
The main objective of this study was to evaluate the sound absorption properties of rigid polyurethane foams (PUFs) produced from crude glycerol (CG) and/or liquefied coffee grounds derived polyol (POL). The lignin content of POL proved to have a major influence on the structure and mechanical properties of the foams. Indeed, the POL content increased the cell size of the foams and their stiffness, which subsequently influenced the sound absorption coefficients. The POL derived foam has slightly higher sound absorption coefficient values at lower frequencies, while the CG foam has higher sound absorption coefficient values at higher frequencies. In turn, the foam prepared using a 50/50 mixture of polyols presents slightly higher sound absorption coefficient values in the medium frequencies range due to a balance between the cell structure and the mechanical properties. The results obtained seem to suggest that the mechanisms involved in sound wave absorption depend on the formulation used to prepare the foams. Additionally higher POL contents improved the thermal stability of PUFs as well as their mechanical properties. From this work the suitability of CG and/or POL derived PUFs as sound absorbing materials has been proven.  相似文献   
18.
19.
Although the study of the sound pressure radiation from membranes and plates is not new, current and future applications have produced a large body of recent research in the field. Several works have been published on the radiation from general plane surfaces and some particular geometries such as rectangular, circular, elliptic and annular. However, the case of sound radiation from non-planar axisymmetric rings that could be applied to the design of coaxial loudspeakers has not received much attention. In this article, a simplified numerical approach for determining the sound pressure radiated from symmetric non-planar pistons and rings is presented. The method can also include those cases having a radially-symmetric velocity distribution.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号